
Manuel Arenaz Julian Miller

parallel-code-qa.github.io/sc19-bof

https://parallel-code-qa.github.io/sc19-bof/

12:15 - 12:18

12:18 - 12:25

12:25 - 12:50

12:50 - 13:10

13:10 - 13:15

Welcome and introductions (3 minutes)

Motivation (7 minutes): How can we lower the cost of adoption of parallel computing?

Speakers (25 minutes): Discuss the challenges and ideas to address this problem

Discussion (20 minutes): Interaction with the audience

Close (5 minutes)

Welcome and introductions (3 minutes)

Motivation (7 minutes): How can we lower the cost of adoption of parallel computing?

Speakers (25 minutes): Discuss the challenges and ideas to address this problem

Discussion (20 minutes): Interaction with the audience

Close (5 minutes)

David Bernholdt Saber Feki Dirk Pleiter Chunhua Liao Robert Schiela Manuel Arenaz

12:15 - 12:18

12:18 - 12:25

12:25 - 12:50

12:50 - 13:10

13:10 - 13:15

Julian MillerKhaled Elamrawi

12:15 - 12:18

12:18 - 12:25

12:25 - 12:50

12:50 - 13:10

13:10 - 13:15

Welcome and introductions (3 minutes)

Motivation (7 minutes): How can we lower the cost of adoption of parallel computing?

Speakers (25 minutes): Discuss the challenges and ideas to address this problem

Discussion (20 minutes): Interaction with the audience

Close (5 minutes)

Welcome and introductions (3 minutes)

Speakers (25 minutes): Discuss the challenges and ideas to address this problem

Discussion (20 minutes): Interaction with the audience

Close (5 minutes)

12:15 - 12:18

12:18 - 12:25

12:25 - 12:50

12:50 - 13:10

13:10 - 13:15

● The automation of testing is critical in software development to improve quality assurance (QA)

○ but today 80% of testing is manual (Gartner) and $32 billion is spent annually on QA

(IDC/Nelson Hall).

● Coding standards in automotive and cybersecurity (e.g. CWE, MISRA) provide developers with rules
and recommendations to prevent faulty code patterns.

● The ever-increasing complexity of HPC software and hardware pushes the developers to critically
re-evaluate testing methods, but there is no coding standard for parallel programming yet.

● Our goal is to form a community interested in quality assurance and best practices for parallel
programming.

● Outcome: List of 5-10 people interested in working on this topic.

“Writing programs that scale with
increasing numbers of cores should be

as easy as writing programs for
sequential computers.”

Asanovic et al. 2009.

● Develop fast & correct parallel
code is a very difficult discipline.

● Because the developer needs a
“holistic view” of the code from
three perspectives: computations,
memory and control flow.

● Software Engineering
Institute (SEI),
Carnegie Mellon
University.

● Funded by US
Department of
Defense (DoD).

● Coding standards for
quality assurance of
software.

● Lack of coding standards for parallel programming

● Lack of tools to automate checking compliance of codes with coding standards for parallel
programming

● Evidence of real needs for this…
○ Initiative Better Scientific Software (https://bssw.io/)

○ Initiative DataRaceBench at LLNL (https://github.com/LLNL/dataracebench)

○ Initiative at TACC (https://github.com/ritua2/IPT/tree/master/bug-patterns/Bug_Collection)

● We need to learn from other industries (e.g. Automotive, Healthcare, Control Systems, Aerospace)

https://bssw.io/
https://github.com/LLNL/dataracebench
https://github.com/ritua2/IPT/tree/master/bug-patterns/Bug_Collection

Welcome and introductions (3 minutes)

Motivation (7 minutes): How can we lower the cost of adoption of parallel computing?

Discussion (20 minutes): Interaction with the audience

Close (5 minutes)

12:15 - 12:18

12:18 - 12:25

12:25 - 12:50

12:50 - 13:10

13:10 - 13:15

David Bernholdt Saber Feki Dirk Pleiter Chunhua Liao Robert Schiela Manuel Arenaz Julian MillerKhaled Elamrawi

●
The importance of developing Better Scientific Software to
manage the ever growing complexity of HPC software, and the
role of DevOps/CD, reusable components, etc… in increasing
the quality of HPC software.
○ David Bernholdt (ORNL, US)
○ Saber Feki (KAUST, Saudi Arabia)
○ Dirk Pleiter(Juelich Supercomputing Center, Germany)

●
Experiences in creating benchmark suites to improve quality
assurance and ensure best practices in developing parallel
software. DataRaceBench is a benchmark suite designed to
systematically and quantitatively evaluate the effectiveness of
data race detection tools. It includes a set of OpenMP
microbenchmarks with and without data races.
○ Chunhua “Leo” Liao (LLNL, US)

●

Successful experiences providing software developers with
rules and recommendations to fix faulty code patterns in
functional safety and cybersecurity through coding
standards like CWE.
○ Robert Schiela (Software Engineering Institute,

Carnegie Mellon University, US)

●
The importance of Quality Assurance and Testing in HPC,
from supercomputing centers to universities, and from
startups to Fortune 500 companies.
○ Khaled El-Amrawi (Brightskies)
○ Manuel Arenaz (Appentra Solutions, Spain)

exascaleproject.org

Promoting and Supporting
Better Scientific Software

David E. Bernholdt
Oak Ridge National Laboratory
bernholdtde@ornl.gov

This work was supported by the U.S. Department of Energy Office
of Science, Office of Advanced Scientific Computing Research
(ASCR), and by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration.

2

The Challenge of Better Scientific Software is Broad

• Our culture values scientific results over the software that produces it
• Consequently, many PIs and research software teams treat their software as a

means to an end rather than a tool that they need to continually hone
• The increasing sophistication and scale of the scientific models make the

software more challenging to create, sustain, and enhance
• The increasing complexity and diversity of HPC hardware makes the software

more challenging to create, sustain, and enhance
• Parallel programming is hard, and unforgiving

3

Mobilizing to Change the Culture

• A growing number of projects and organizations around the world are
recognizing these challenges
– D. S. Katz et al., "Community Organizations: Changing the Culture in Which Research

Software Is Developed and Sustained," in Computing in Science & Engineering, vol. 21, no. 2,
pp. 8-24, 1 March-April 2019.
doi: 10.1109/MCSE.2018.2883051

• Using different approaches, targeting different communities
• Look for opportunities to participate and collaborate!

https://doi.org/10.1109/MCSE.2018.2883051

Interoperable Design of Extreme-scale
Application Software (IDEAS)

4

Objectives
Address confluence of trends in hardware and

increasing demands for predictive
multiscale, multiphysics simulations.

Respond to trend of continuous refactoring
with efficient agile software engineering
methodologies & improved software design.

Approach
Interdisciplinary multi-institutional team (ANL, LANL, LBNL, LLNL,

ORNL, PNNL, SNL, U. Oregon) with broad experience in scientific
software development

Close partnerships with applications teams ensures impact on science
Identification, documentation and dissemination of best practices for BER

and ECP software teams and the broader community
Catalyzing software process improvements through tailored engagement

with individual projects
Working to bend the curve of software development costs downwards

Impact on Applications & Programs
Terrestrial ecosystem use cases tied initial IDEAS
activities to programs in DOE Biological and
Environmental Research (BER). The Exascale Computing
Project (ECP) supports a broad portfolio of applications
furthering science, energy, national security, and economic
competitiveness.

Software
Productivity
for Extreme-

Scale Science
Methodologies

for Software
Productivity

Use Cases:
Terrestrial
Modeling

Extreme-Scale
Scientific Software
Development Kit

(xSDK)

ideas-productivity.org

Project History
IDEAS began in 2014 as a DOE
ASRC/BER partnership to improve
application software productivity,
quality, and sustainability. In 2017,
the DOE Exascale Computing
Project began supporting IDEAS to
help application teams improve
developer productivity and software
sustainability while making major
changes for exascale.

C
os

t

ProgressStart Finish

Old Process
New Process

Motivation
Enable increased scientific productivity, realizing the potential
of extreme- scale computing, through a new interdisciplinary
and agile approach to the scientific software ecosystem.

5

How does IDEAS Achieve Its Goals?

Tutorials

HPC-BP
Webinars

Better
Scientific
Software

Minisymposia,
Workshops,
BOFs, etc.

ECP Code Teams

HPC/CSE Community

6

Building an Online Community
https://bssw.io
• New community-based resource for scientific software

improvement
• A central hub for sharing information on practices, techniques, experiences, and tools to improve

developer productivity and software sustainability for computational science & engineering (CSE)

Goals
• Raise awareness of the importance of good software practices to scientific productivity and to the

quality and reliability of computationally-based scientific results
• Raise awareness of the increasing challenges facing CSE software developers as high-end

computing heads to extreme scales
• Help CSE researchers increase effectiveness as well as leverage and impact
• Facilitate CSE collaboration via software in order to advance scientific discoveries

Site users can…
• Find information on scientific software topics
• Contribute new resources based on your experiences
• Create content tailored to the unique needs and

perspectives of a focused scientific domain

7

Additional Software-Related Events at SC19
Day/Time Event Type Event Title

Sunday Tutorial Floating-Point Analysis and Reproducibility Tools for Scientific Software

Sunday Workshop The 2019 International Workshop on Software Engineering for HPC-Enabled Research (SE-
HER 2019)

Monday Tutorial Better Scientific Software

Monday Tutorial Managing HPC Software Complexity with Spack

Monday Workshop 3nd International Workshop on Software Correctness for HPC Applications (Correctness 2019)

Monday Students@SC Students@SC: Modern Software Design, Tools, and Practices

Tuesday BoF Extreme-Scale Scientific Software Stack (E4S)

Tuesday BoF Exchanging Best Practices in Supporting Computational and Data-Intensive Research

Tuesday Panel Developing and Managing Research Software in Universities and National Labs

Wednesday BoF Software Engineering and Reuse in Modeling, Simulation, and Data Analytics for Science and
Engineering

Thursday BoF Quality Assurance and Coding Standards for Parallel Software

Thursday Panel Sustainability of HPC Research Computing: Fostering Career Paths for Facilitators, Research
Software Engineers, and Gateway Creators

Friday Panel The Road to Exascale and Beyond is Paved by Software: How Algorithms, Libraries and Tools Will
Make Exascale Performance Real

Bold events (co-)organized by IDEAS

https://sc19.supercomputing.org/presentation/?id=tut139&sess=sess205
https://sc19.supercomputing.org/session/?sess=sess106
https://sc19.supercomputing.org/presentation/?id=tut158&sess=sess192
https://sc19.supercomputing.org/presentation/?id=tut164&sess=sess194
https://sc19.supercomputing.org/session/?sess=sess118
https://sc19.supercomputing.org/presentation/?id=pec109&sess=sess410
https://sc19.supercomputing.org/session/?sess=sess269
https://sc19.supercomputing.org/session/?sess=sess266
https://sc19.supercomputing.org/presentation/?id=pan108&sess=sess226
https://sc19.supercomputing.org/session/?sess=sess341
https://sc19.supercomputing.org/session/?sess=sess316
https://sc19.supercomputing.org/presentation/?id=pan109&sess=sess227
https://sc19.supercomputing.org/presentation/?id=pan117&sess=sess232

●
The importance of developing Better Scientific Software to
manage the ever growing complexity of HPC software, and the
role of DevOps/CD, reusable components, etc… in increasing
the quality of HPC software.
○ David Bernholdt (ORNL, US)
○ Saber Feki (KAUST, Saudi Arabia)
○ Dirk Pleiter(Juelich Supercomputing Center, Germany)

●
Experiences in creating benchmark suites to improve quality
assurance and ensure best practices in developing parallel
software. DataRaceBench is a benchmark suite designed to
systematically and quantitatively evaluate the effectiveness of
data race detection tools. It includes a set of OpenMP
microbenchmarks with and without data races.
○ Chunhua “Leo” Liao (LLNL, US)

●

Successful experiences providing software developers with
rules and recommendations to fix faulty code patterns in
functional safety and cybersecurity through coding
standards like CWE.
○ Robert Schiela (Software Engineering Institute,

Carnegie Mellon University, US)

●
The importance of Quality Assurance and Testing in HPC,
from supercomputing centers to universities, and from
startups to Fortune 500 companies.
○ Khaled El-Amrawi (Brightskies)
○ Manuel Arenaz (Appentra Solutions, Spain)

Quality Assurance and Coding
Standards for Parallel Software

• System software maintenance and upgrade result in changes in the
ecosystem of HPC system
• Systematic non-regression testing after each maintenance
• Validate binaries of installed software (3rd party packages), applications

and libraries
• Validate numerical correctness and performance

• Challenge: in-house software validation
• Most of developers are non-CS
• Not following standard software engineering best practices
• Challenging to integrate with non-regression test suite

●
The importance of developing Better Scientific Software to
manage the ever growing complexity of HPC software, and the
role of DevOps/CD, reusable components, etc… in increasing
the quality of HPC software.
○ David Bernholdt (ORNL, US)
○ Saber Feki (KAUST, Saudi Arabia)
○ Dirk Pleiter(Juelich Supercomputing Center, Germany)

●
Experiences in creating benchmark suites to improve quality
assurance and ensure best practices in developing parallel
software. DataRaceBench is a benchmark suite designed to
systematically and quantitatively evaluate the effectiveness of
data race detection tools. It includes a set of OpenMP
microbenchmarks with and without data races.
○ Chunhua “Leo” Liao (LLNL, US)

●

Successful experiences providing software developers with
rules and recommendations to fix faulty code patterns in
functional safety and cybersecurity through coding
standards like CWE.
○ Robert Schiela (Software Engineering Institute,

Carnegie Mellon University, US)

●
The importance of Quality Assurance and Testing in HPC,
from supercomputing centers to universities, and from
startups to Fortune 500 companies.
○ Khaled El-Amrawi (Brightskies)
○ Manuel Arenaz (Appentra Solutions, Spain)

SC19 BOF: QUALITY ASSURANCE AND CODING STANDARDS

FOR PARALLEL SOFTWARE

Dirk Pleiter | SC’19, Denver | 21.11.2019

Why is Quality Assurance Increasingly Important?

Increasing complexity of application increases risk of introducing errors
• Quality assurance procedures help avoiding introducing (and keeping undetected) errors

Code correctness and standard compliance becomes more important

when code has to run on a variety of architectures
• Errors may show-up when moving to other architectures

Accomplish code refactoring for exascale systems efficiently
• Need to keep "technical debt" low

Write code that allows to leverage different levels of parallelism
• Example: Robust frameworks facilitating data layout transformations

 221.11.2019

Digression: Technical Debt

Technical debt as a metaphor: Financial debt vs. future costs associated to

fixing immature software

• Economic concept

Aim for developers being aware of the technical debt that they incur during

application development

• Aim for continues assessment of technical debt, e.g. application of coding quality rules

Technical debt management tools

• Based on static code analysis

• Technical debt assessment

– Systematic approach to prioritise code updates

– Approach to jointly defining and prioritising code standards

 321.11.2019

How to Promote Quality Assurance?

Develop/enhance/promote uptake of relevant tools
• Need to establish benefits for code developers

Involve software engineers in development of scientific

applications
• Very hard to achieve due to lacking attractive career paths

Improve education and training
• "Software Development in Science" is often not part of curricula at universities or

HPC training programs

 421.11.2019

●
The importance of developing Better Scientific Software to
manage the ever growing complexity of HPC software, and the
role of DevOps/CD, reusable components, etc… in increasing
the quality of HPC software.
○ David Bernholdt (ORNL, US)
○ Saber Feki (KAUST, Saudi Arabia)
○ Dirk Pleiter(Juelich Supercomputing Center, Germany)

●
Experiences in creating benchmark suites to improve quality
assurance and ensure best practices in developing parallel
software. DataRaceBench is a benchmark suite designed to
systematically and quantitatively evaluate the effectiveness of
data race detection tools. It includes a set of OpenMP
microbenchmarks with and without data races.
○ Chunhua “Leo” Liao (LLNL, US)

●

Successful experiences providing software developers with
rules and recommendations to fix faulty code patterns in
functional safety and cybersecurity through coding
standards like CWE.
○ Robert Schiela (Software Engineering Institute,

Carnegie Mellon University, US)

●
The importance of Quality Assurance and Testing in HPC,
from supercomputing centers to universities, and from
startups to Fortune 500 companies.
○ Khaled El-Amrawi (Brightskies)
○ Manuel Arenaz (Appentra Solutions, Spain)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Benchmarking Quality Assurance Tools
- Evaluating Data Race Detection tools using DataRaceBench

Chunhua	“Leo”	Liao,	Pei-Hung	Lin	,	Markus	Schordan	and	Ian	Karlin	

LLNL-PRES-796717

SC19: BoF Quality Assurance and Coding Standards for Parallel Software
Nov. 21, 2019, Denver, CO

2	

▪  Motivation		
—  the	lack	of	apple-to-apple	comparison	

among	data	race	detection	tools	
▪  Containing	both	positive	and	negative	

tests	
—  Generate	standard	quantitative	metrics	
—  Precision,	recall,	and	accuracy	

▪  Coverage:	116	total	microbenchmarks	
—  V1.0.1:	72	from	AutoPar’s	regression	tests,	

PolyOpt,	LLNL	apps,	etc.	
—  v1.2.0:	44	more	based	on	semantics	

coverage	analysis	of	OpenMP	4.5	

DataRaceBench:	a	Dedicated	Data	Race	
Detection	Benchmark	Suite	

DataRaceBench

Microbenchmarks Scripts

Race-Yes
Programs

Race-No
Programs

Original Variable-length

https://github.com/LLNL/dataracebench

3	

1.  …
2.  int i,x;
3.  #pragma omp parallel for lastprivate (x)
4.  for (i=0;i<100;i++)
5.  { x=i; }
6.  printf("x=%d",x);
7.  …

Design	Philosophy:	Positive	+	Negative	Tests	

lastprivate-orig-no.c

lastprivatemissing-orig-yes.c

1.  …
2.  int i,x;
3.  #pragma omp parallel for
4.  for (i=0;i<100;i++)
5.  { x=i; }
6.  printf("x=%d",x);
7.  …

one data race pair
x@5 vs. x@5

N2: Use of data sharing clauses

Y2: Missing data sharing clauses

4	

V1.2.0	Report	for	Archer	and	Intel	Inspector	

Compile-time seg. fault (CSF),
Unsupported feature (CUN)

Runtime seg. Fault (RSF),
Runtime timeout (RTO)

5	

Latest	regression	results	(partial)	

https://github.com/LLNL/dataracebench/wiki/Regression-metrics

Compile-time seg. fault (CSF)
Unsupported feature (CUN)
Runtime seg. Fault (RSF)
Runtime timeout (RTO)

6	

▪  Quality	assurance	needs	tools,	a	lots	of	them.	
—  But	who	are	watching	the	quality	of	these	tools?		

▪  Regression	tests	(benchmarks)	are	critical	to	measure	and	improve	the	
quality	of	any	software,	including	quality	assurance	tools.	
—  Must	have	both	Positive	and	Negative	tests	

▪  DataRaceBench	is	a	set	of	regression	test	for	data	race	detection	tools.		
—  Successfully	identified	limitations	and	bugs	for	popular	tools,	sent	actionable	info.	to	developers	
—  Showing	regression	of	tools	across	different	versions	
—  Providing	a	dashboard	summarizing	the	state-of-the-art	of	data	race	detection		

▪  Maintaining	a	tool	benchmark	suite	(regression	tests)	is	challenging.	
—  Constant	and	fast	evolving	of	parallel	language	standards	
—  Largely	manual	process	to	analyze	and	improve	coverage	of	language	features	and	code	patterns	
—  Resources	(labor+machines)	to	regularly	run	and	publish	results	

	

Take-away	Messages	

https://github.com/LLNL/dataracebench

●
The importance of developing Better Scientific Software to
manage the ever growing complexity of HPC software, and the
role of DevOps/CD, reusable components, etc… in increasing
the quality of HPC software.
○ David Bernholdt (ORNL, US)
○ Saber Feki (KAUST, Saudi Arabia)
○ Dirk Pleiter(Juelich Supercomputing Center, Germany)

●
Experiences in creating benchmark suites to improve quality
assurance and ensure best practices in developing parallel
software. DataRaceBench is a benchmark suite designed to
systematically and quantitatively evaluate the effectiveness of
data race detection tools. It includes a set of OpenMP
microbenchmarks with and without data races.
○ Chunhua “Leo” Liao (LLNL, US)

●

Successful experiences providing software developers with
rules and recommendations to fix faulty code patterns in
functional safety and cybersecurity through coding
standards like CWE.
○ Robert Schiela (Software Engineering Institute,

Carnegie Mellon University, US)

●
The importance of Quality Assurance and Testing in HPC,
from supercomputing centers to universities, and from
startups to Fortune 500 companies.
○ Khaled El-Amrawi (Brightskies)
○ Manuel Arenaz (Appentra Solutions, Spain)

1Coding Standards for Parallel Software
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

Coding Standards for Parallel

Software

Robert Schiela

2Coding Standards for Parallel Software
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

Document Markings

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon

University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government

position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not

necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN

"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY

MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR

RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND

WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-

US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal

permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1226

Quality Assurance and Coding Standards for Parallel Software

3Coding Standards for Parallel Software
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

Dimensions for Developing Coding Standards

What is the purpose? What Qualities to Assure?

• Performance!!!

• Safety? – MISRA & AUTOSAR

• Security? – CWE, OWASP & CERT Secure Coding Standards

• Complexity, Maintainability, Readability? – Style Standards

How specific will our standards be?

• Design vs Code (Framework/Library Abstractions?)

• Function vs Form (Security Software vs. Software Security)

• Language agnostic vs. language specific constructs

How will we define patterns? – Identify anti-patterns

• Security: Vulnerabilities, Undefined Behavior, Abstraction Layer Interfaces

How will it be used? – Prevention, Enforcement, Tools, Automation

Quality Assurance and Coding Standards for Parallel Software

4Coding Standards for Parallel Software
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

Parallel Software Concerns?

Performance!!!

But

• Software Provenance

• Information Assurance (Confidentiality, Integrity, Availability)

• Privacy

• Functional Safety for Safety Critical

And

• Robust Distribution and Recombination

• HeterogeneousÆ Portability or Virtualized Abstraction

• AI & Deep Learning

- Untrusted, Unstructured Data – Hard to Validate Input

- Untrusted Implementation – Lack of Explainability = Hard to Verify Results)

Quality Assurance and Coding Standards for Parallel Software

5Coding Standards for Parallel Software
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

Abstraction Layer Interfaces

(misinterpretation leading to defects)

Node/Host Layers (Compilation Errors like Undefined Behavior, Injection Attacks)

• Interdependent Services/Applications

• High-Level Software (Pre-Compiled/Interpreted)

• Low-Level Software (Post-Compiled/Interpreted)

• Hardware

• Virtualization & Software-defined hardware blur the lines

Server Stack Layers (Injection Attacks)

• Client / Front-end Server / Backend Server)

System of Systems (Injection Attacks, Reliability)

• Dependencies on external services and data

Network Stack Layers and Protocols

Data vs. Instruction (Untrusted Inputs affecting data flow & control flow)

Quality Assurance and Coding Standards for Parallel Software

6Coding Standards for Parallel Software
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

For More Information

Robert Schiela
Technical Manager

Secure Coding

Email: rschiela@cert.org

Web:

securecoding.cert.org (wiki)

www.cert.org/secure-coding

Robert leads the Secure Coding group at

the SEI in defining and executing research

and transitioning knowledge that improves

the state of the art and practice in secure

software development.

Robert has worked in the fields of IT,

software engineering, and software

education for more than 20 years. He has

been at the SEI for nearly 15 years,

primarily focused on software process,

quality, and security.

Quality Assurance and Coding Standards for Parallel Software

mailto:rschiela@cert.org
https://securecoding.cert.org/
http://www.cert.org/secure-coding

●
The importance of developing Better Scientific Software to
manage the ever growing complexity of HPC software, and the
role of DevOps/CD, reusable components, etc… in increasing
the quality of HPC software.
○ David Bernholdt (ORNL, US)
○ Saber Feki (KAUST, Saudi Arabia)
○ Dirk Pleiter(Juelich Supercomputing Center, Germany)

●
Experiences in creating benchmark suites to improve quality
assurance and ensure best practices in developing parallel
software. DataRaceBench is a benchmark suite designed to
systematically and quantitatively evaluate the effectiveness of
data race detection tools. It includes a set of OpenMP
microbenchmarks with and without data races.
○ Chunhua “Leo” Liao (LLNL, US)

●

Successful experiences providing software developers with
rules and recommendations to fix faulty code patterns in
functional safety and cybersecurity through coding
standards like CWE.
○ Robert Schiela (Software Engineering Institute,

Carnegie Mellon University, US)

●
The importance of Quality Assurance and Testing in HPC,
from supercomputing centers to universities, and from
startups to Fortune 500 companies.
○ Khaled El-Amrawi (Brightskies)
○ Manuel Arenaz (Appentra Solutions, Spain)

SC19 BoF - Quality Assurance and
Coding Standards for Parallel

Software

Manuel Arenaz
manuel.arenaz@appentra.com

 ©Appentra Solutions S.L.

Metrics for Parallelization of Codes

2

No. Value Metric

1 Accelerate the runtime of the software
- Legacy software that needs to be modernised to run on

modern hardware
- sequential software to be parallelized
- parallel software to exploit more parallelism
- parallel software ported to a different hardware (eg. CPU

to GPU)

Speedup

2 Train customer’s workforce
- developer/maintainer learns and enforces best practices

for development of parallel software
- development/maintainer applies code changes to clearly

understand their value from the point of view of
parallelization

Defects (eg. race conditions)
Recommendations (eg. best practices)
Parallelization opportunities
Parallelization strategies
Parallelization tools

Manuel Arenaz | November 20, 2019
©Appentra Solutions S.L.

3

Capabilities of Parallelware tools
● Detection of defects in parallel code, i.e. race conditions not detected yet

○ Static data race detection for multicore CPUs and GPUs
○ See https://www.appentra.com/knowledge/checks/

● Enforce best practices for parallel programming through suggestions for code refactorizations
○ See https://www.appentra.com/knowledge/checks/

● Discover parallelization opportunities through in-depth static code analysis
○ Source code analysis guided through code patterns, not line by line
○ See https://www.appentra.com/knowledge/patterns/

● Quickly design and implement parallel code for CPU/GPU using OpenMP/OpenACC
○ Parallel code implementation guided by code patterns, not “happy idea”
○ See https://www.appentra.com/knowledge/patterns/

Appentra approach is to break down best practices into items that
are objective, measurable and actionable

https://www.appentra.com/knowledge/checks/
https://www.appentra.com/knowledge/checks/
https://www.appentra.com/knowledge/patterns/
https://www.appentra.com/knowledge/patterns/

Knowledge Base of Defects & Recommendations

4

https://www.appentra.com/knowledge/checks/

https://www.appentra.com/knowledge/checks/

PWD001:
Invalid OpenMP
multithreading
datascoping

5

PWR002: Declare
scalar variables in
the smallest
possible scope

6

NAS Parallel Benchmarks: “pwcheck” summary

7

Started collaboration with LLNL: DataRaceBench

8

Total TP TN FP FN TU FU Errors Time
Correctnes

s success
Precision Recall Accuracy

DRACO 116 26 20 0 0 28 33 9 00:14:17 0.4 0.58 0.55 0.59

Parallelware
Analyzer

116 3 40 1 45 8 14 5 00:00:06 0.37 0.25 0.05 0.39

Archer 2.0 386 202 156 3 20 - - 5 00:06:17 0.90 0.99 0.91 0.94

Inspector
19/1904

396 195 164 7 30 - - 0 01:37:27 0.91 0.97 0.87 0.91

ThreadSanitizer
LLVM8

384 184 152 4 38 - - 6 00:07:03 0.81 0.98 0.83 0.89

ROMP 384 198 144 6 18 - - 18 00:59:20 0.85 0.97 0.92 0.93

TP: reported existent race conditions
FP: reported non-existent race conditions
TN: didn’t report any race conditions when non exist
FN: failed to report existent race conditions
TU: reported unknown for existent race conditions
FU: reported unknown for non-existent race conditions

Errors: tool crashes or failed analyses
Correctness success: TP + TN / Total
Precision: TP / (TP + FP)
Recall: TP / (TP + FN)
Accuracy: (TP + TN) / (TP + TN + FP + FN)

SC19 BoF - Quality Assurance and
Coding Standards for Parallel

Software

Manuel Arenaz
manuel.arenaz@appentra.com

 ©Appentra Solutions S.L.

Welcome and introductions (3 minutes)

Motivation (7 minutes): How can we lower the cost of adoption of parallel computing?

Speakers (25 minutes): Discuss the challenges and ideas to address this problem

Close (5 minutes)

12:15 - 12:18

12:18 - 12:25

12:25 - 12:50

12:50 - 13:10

13:10 - 13:15

Welcome and introductions (3 minutes)

Motivation (7 minutes): How can we lower the cost of adoption of parallel computing?

Speakers (25 minutes): Discuss the challenges and ideas to address this problem

Discussion (20 minutes): Interaction with the audience

BoF website

parallel-code-qa.github.io/sc19-bof

Join the BoF mailing list to receive relevant updates and discussions

groups.io/g/parallel-code-qa-sc19-bof

12:15 - 12:18

12:18 - 12:25

12:25 - 12:50

12:50 - 13:10

13:10 - 13:15

https://parallel-code-qa.github.io/sc19-bof/
https://groups.io/g/parallel-code-qa-sc19-bof

BoF website

parallel-code-qa.github.io/sc19-bof

Join the BoF mailing list to receive relevant updates and discussions

groups.io/g/parallel-code-qa-sc19-bof

https://parallel-code-qa.github.io/sc19-bof/
https://groups.io/g/parallel-code-qa-sc19-bof

Manuel Arenaz Julian Miller

parallel-code-qa.github.io/sc19-bof

https://parallel-code-qa.github.io/sc19-bof/

David Bernholdt (ORNL, US)

Saber Feki (KAUST, Saudi Arabia)

Dirk Pleiter(Juelich Supercomputing Center, Germany)

Chunhua “Leo” Liao (LLNL, US)

Robert Schiela (Software Engineering Institute, Carnegie

Mellon University, US)

Khaled Elamrawi (Brightskies)

Manuel Arenaz (Appentra Solutions, Spain)

Julian Miller: RWTH Aachen University, Germany)

